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It has been found in part 1 (Krishnamurti 1968) that when the mean temperature 
of a fluid layer is changing at a constant rate 7, hexagonal flows are stable in a 
range of Rayleigh numbers near the critical. The direction of flow depends upon 
the sign of 7. The static state is unstable to finite amplitude disturbances at  
Rayleigh numbers below the critical point predicted by linear theory. 

The validity of this theory is tested in an experiment in which the heat flux 
is measured as a function of 7 and Rayleigh number. The horizontal plan form is 
determined from the side by continuously exposing a photographic film moving 
in a vertical direction as tracers in different regions of the fluid are illuminated. 
Finite amplitude instability and hexagonal cells are indeed observed. 

1. Critical observables of the theory 
It is known that when a horizontal layer of fluid has an adverse temperature 

gradient maintained across it, there is an infinitely degenerate set of possible 
flows at  the critical point. It is also known (Schliiter, Lortz & Busse, 1965) that 
within the Boussinesq approximation and with constant mean temperature the 
two-dimensional roll is the only stable solution. In part 1 of this study it has been 
shown that the asymmetry of the temperature profile when the mean tempera- 
ture is changing at  a rate 7 gives rise to stable hexagonal flows for a range of 
Rayleigh numbers near the critical. The direction of flow at the centre of the 
hexagon is downward if 7 is positive and upward if 7 is negative. The static 
state is unstable to finite amplitude disturbances below the linearly predicted 
critical Rayleigh number. 

In  a laboratory experiment, the occurrence of hexagons for a range of Ray- 
leigh numbers near critical when other causes for their selection are absent, and 
the dependence of the direction of flow upon the sign of 7 are probably the best 
qualitative tests of the theory. 

For 7 sufficiently large a hysteresis in the heat flux should be measurable when 
the critical Rayleigh number R, is approached from below and from above. 
Based upon rigid boundary calculations from part 1 (and taking infinite Prandtl 

7 Present address : Institute of Geophysical Fluid Dynamics, Florida State University, 
Tallahassee, Florida 32306. 
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number), the difference AH in heat flux at  R, is AH = 1 6 . 3 ~ ~  where 7 = (d2/KAT) 
(@/at). For a measurable A H ,  say AHIH z 25 %, 7 N 5 is needed and is easily 
obtainable. For a quantitative test of the theory the measured heat flux should 
be extrapolated to small 7 and amplitude 8. 
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2. Design of an experiment to measure effective conductivity 
The validity of the theory can be tested by measuring relative conductivities 

and relative Rayleigh numbers. For example, the critical Rayleigh number will 
be measured relative to that for 7 = 0. The design in figure 1, similar to  the 
quasi-steady experiment designed by Malkus (1954), allows one to scan slowly 
through Rayleigh numbers near the critical value. 

Replace 
for cooling 

Methyl methacrylate 

Styrofoam insulation 

Aluminium 6061 

= 200 cjs siiicone oil 

FIGURE 1. The apparatus for measuring heat flux. 

The convecting layer is 30 em by 30 em by 2 em in depth of Dow Corning 
‘200 fluid’ silicone oil, AA5871, with kinematic viscosity u of 200 centistokes. 
Their variation of viscosity and conductivity k with temperature is relatively 

ak - 0.05 % per “C. cr: l % p e r  “C and -- 
1 au 
u ?IT kaT - 

small: 
_ _  

Bounding the convecting layer are four blocks of aluminium 6061 whose thermal 
diffusivity K is 0.87 em2 see-l. For the oil, K is 1-1 x em2 see-1. By attempting 
to approach the perfectly conducting boundary condition of the theory, it 
follows that temperature gradients in the aluminium are too small to measure. 
Most of the gradient is across the plastic barrier. The heat flux, and the effective 
conductivity of the liquid, is determined in terms of the heat flux across this 
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barrier. The temperature in each of the four aluminum blocks was measured once 
every minute and a least squares fit to a fourth-order polynomial in time was 
obtained. This allowed calculation of time derivatives of temperatures. The 
effective conductivity of the convecting liquid is then obtained in terms of the 
four temperatures, their time derivatives, the barrier depth and conductivity 
(Krishnamurti 1967). 

2.1. Precision of the experiment 
By devising a switching arrangement so that both large (around 10°C) and small 
(around 0.5 "C) temperature differences appeared as full scale on the recorder, 
the relative conductivity could be determined to a precision of f 3 yo. 

2.2. Accuracy of the experiment 
Since the experiment cannot be performed under the idealized conditions of the 
theory, each non-ideal condition must be shown not to have a dominating effect. 

Non-Boussinesq effects can be shown to be not the reason for realization of 
hexagons. For the silicone oil 

1 av 
7 = -- = 1 %per "C, 
v -  vaT 

giving r,R(l>l) = 0.1 (from Busse's (1962) calculation). The corresponding value 
for changing mean temperature is 7R(1y1) = 67. For 7 = 8 this effect is 500 times 
larger than that due to variation of v with temperature. Furthermore, a reversal 
of the direction of flow can be obtained with this effect for any given fluid. 

A slow variation of temperature difference AT with time has been shown 
neither to give rise to finite amplitude instability nor to removal of degeneracy 
(Krishnamurti 1967). As a check, a few data points are obtained with AT and 
7 held constant. 

The fringing of the isotherms at  the lateral boundaries always gives rise to a 
horizontal component of temperature gradient which drives subcritical rolls at  
the boundary. However, hexagons or rolls could be formed in a comparatively 
large area inside these boundary rolls. 

Effects such as heat loss, side walls, and finite conductivity of the aluminum 
upon the heat flux are not important since this is a relative measurement. 

A spurious hysteresis in the heat flux due to change of material properties 
with mean temperature was avoided by comparing results of two experiments 
at the same mean temperature and Rayleigh number. 

3. A method of photographing the plan form when the flow is visible 
only in elevation 

Which plan form would occur near the critical Rayleigh number had been an 
unanswered question for many decades. B6nard's regular hexagons were shown 
(Pearson 1958) to be not buoyancy-driven but due to surface tension variation 
with temperature. Non-linear studies proved rolls to be stable or with variation 
of material properties, hexagons to be stable. It is noted that Silveston's (1958) 
three-dimensional cells may not be due to material property variation. Using 
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a silicone oil with very small q,, his photographs show three-dimensional cells 
persisting to higher Rayleigh number, the larger the depth d of the layer. Effects 
of material property variation, on the other hand, would decrease with increased 
d since then AT must be decreased to obtain the same Rayleigh number. 

Even with highly conducting opaque boundaries above and below, the plan 
form can be determined as follows: in figure 2 we let x be in the direction of the 
optic axis, y normal to the plane of the page, and z in the vertical direction. A 
narrow collimated beam of light was shone in the y direction, another identical 
beam in the - y direction so they overlapped. This was for the purpose of visual- 
izing shear regions at  positive and negative angles from the line of sight. As the 
two beams were moved together, the camera was moved horizontally to keep the 
illuminated region in focus. At the same time the camera was rocked about an 
axis through its lens thus exposing different parts of the film as different regions 
of the fluid were illuminated. In  this way, photographs were obtained from the 
side as if one were looking from above. Aluminium flakes were used as tracers. 

Camera Camera 
position .i position B 

Illumination Illumination 
at x A  at xH 

FIGURE 2. Geometry for photographing the plan form of convection. 

4. Observations and discussion of results 
Figure 3 (a), plate 1, shows a static state, 3 (b) ,  plate 1, shows roll convection at 

Rayleigh number just above critical and q = 0. Figure 3 (c), plate 1, shows hex- 
agonal cells obtained under identical conditions as for 3(b), that is, the same 
apparatus, same fluid, same AT, but with the mean temperature changing at  a 
rate of 3.6"C per hour. Figure 4(a) ,  plate 2 ,  shows hexagonal cells over most of 
the layer with roll cells along the edge of the layer. It is to be noted that all six 
sides will not appear bright; the sides which are at  60" or 120" to the line of sight 
will be relatively bright but the side perpendicular to the line of sight appears 
dark. Figures 4 (b )  and (c), plate 2, show a transition from hexagonal to roll plan 
form. Figure 5 (a) ,  plate 3, shows 'rolls' as they formed in the square container. 
Rolls always started in this square array but never remained in this pattern for 
many hours. Figure 5 (b ) ,  plate 3, taken about 6 h after the initiation of convection 
shows the tendency to two-dimensional rolls which end right at  the container wall 
in the upper part of the photograph. In  repetitions of the same experiment, the 
rolls were found after many hours of convection to lie along either of the two 
perpendicular directions, and occasionally along the diagonal of the container. 
Figure ~ I c ) ,  plate 3, photographed after 36h of convection, shows most of the 
layer with two-dimensional rolls. 
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By observing individual aluminium particles by eye, it was confirmed that 
when 7 is positive, the motion is upward along the sides of the hexagon and down 
in the centre. Furthermore, the reverse direction of flow was found for 7 negative. 

The cell size can be easily determined from the photographs. It is found to be a 
few percent larger than that predicted to correspond to the critical Rayleigh 
number. 
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FIGURE 6. The unsmoothed thermocouple output AT as a function of time. 

A sample of raw data is shown in figure 6 showing a scatter of a few thousandths 
of a degree. The heat flux H ,  defined as H = k,, ATld where keff is an effective 
conductivity of the liquid, is computed as described in $ 2  and is plotted against 
AT in figure 7. The curve labelled I is for 7 = 0 and convection in roll plan form. 
For sufficiently small AT the curve is a straight line whose slope is k/d; the 
measured slope gives k= 3-7 x c.g.s. units in agreement to two significant 
figures to that given by the manufacturer. The critical temperature difference 
is taken to be that point at which the heat flux curve departs from the conduction 
curve. This gives AT, = 0.56 "C in good agreement with a ATc = 0.53 "C predicted 
simply by using the manufacturer's listed values of a, K and v. 

The curved part of the heat flux graph just beyond AT, represents growth of the 
flow. The points are 1 min apart in time. The slope of the straight portion beyond 
this is a direct measure of the theoretically predicted No/R(2*0). In dimensional 
form the measured slope is 7.4 x cal see-l em-2 "C-l in agreement within 6 yo 
with the predicted value. The curve I1 in figure 7 is one for which the temperature 
difference was slowly increased with the mean temperature changing at the rate 
3.6 O/hour, corresponding to a dimensionless 7 = 10. The critical Rayleigh num- 
ber predicted for 7 = 10 is 1465, which is 14% below the critical number for 
7 = 0. The observed critical temperature difference is, however, about 40 % 
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below the critical point for 7 = 0. This is interpreted as a finite amplitude insta- 
bility occurring at a Rayleigh number below that predicted by linear theory. 
The curve labelled I11 is one in which AT decreased with time, starting with a 
large value of 7 which also gradually decreased with time. The oscillation in the 
heat flux is understood as follows. A convecting fluid can transport heat to its 
upper boundary, thereby warming it and decreasing AT. Depending upon the 
quantities controlled at  the boundary, AT may decrease to the point such that 
convection is no longer sustained. However, if heat is being supplied from below, 
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FIGURE 7. Heat flux plotted against temperature difference. 

the temperature difference will build up again. When the critical AT is reached, 
convection will start again. Such an oscillatory convection has been studied by 
Busse (1967) in which he treats the problem of fixed heat flux. Here there is a 
range of heat flux for which there exists no stable stationary solution. Hours after 
all heaters were turned off an oscillation in the temperature difference AT is 
directly seen in the unsmoothed thermocouple output (figure 6). The period of 
oscillation is about 2 h. 

Figure 7 also shows two points obtained with constant 7 and AT. The point 
labelled by a triangle corresponds to aT/at = 2.1 "C/h or 7 = 3.6. The point labelled 
by a square corresponds to aT/at = 3.1 "C/h or 7 = 6.7. 
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It was seen from the theory that the width of the hysteresis gap, for example, 
determined by R ( l 9 I )  was too small to measure for 7 < 1 but sufficiently large for 
7 about 5 or 10. This part of the measurement is not meant to be a quantitative 
test of the calculation, but the fact that with a large value of 7, a greatly increased 
heat flux is obtained below the linearly predicted critical point is of considerable 
interest. Nevertheless, the width of the gap and the point of instability are in 
reasonable agreement with the values computed from the truncated expressions. 

5. Conclusions 
When the mean temperature was held constant (@/at 5 5 x 10-20C per hour 

or 7 5 0.1) two-dimensional rolls were found t o  be the experimentally realized 
flow pattern near the critical Rayleigh number. With the same fluid under identi- 
cal conditions, except with the mean temperature changing at a rate of a few 
degrees per hour (q 2: lo), hexagonal cells were found to be the realized flow. 
The direction of flow a t  the centre of the hexagon was observed to be downward 
for 7 positive and upward for 7 negative. In  spite of opaque boundaries above 
and below the convecting layer, the 'plan form' was obtained by viewing the 
layer from the side. Measurements of the heat flux indicate a finite amplitude 
instability and a hysteresis effect. 

This paper is extracted from a Ph.D. dissertation, University of California, at 
Los Angeles. I am deeply grateful to Professor W. V. R. Malkus for suggesting 
this problem and for his continued guidance. I also wish to acknowledge the 
competent work of Mr Paul Cox in building the apparatus, and t o  thank him for 
his freely given assistance. The research was supported by the National Science 
Foundation under Grant GP-2414. 
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( c )  

FIGIJRE 3 .  A ‘plan view’ of a layer of liquid. Dow Corning ‘200’ series silicone oil, viscosity 
200 cS, conductivity 3.7 x c.g.s., depth 2.0 cm. (a )  Static state, A T  = 0, 71 = 0. 
(6) Convection in  roll plan form, 4T = 0.80 “C, q = 0. (c) Convection in hexagonal plan 
forni, AZ’ = 0.60 “C, 7 = 3.fi0/h. 

KRIGHNAMURTI (Fucing p .  464) 
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FIGURE 4. A 'plan vie\+ ' of a layer of liquid in a sequence showing a transition from 
hexagons to rolls. Dow Corning '200' serics silicone oil, viscosity 200 cS, conductivity 
3.7 x 80-4 c.g.s., depth 2.0cm. (a )  I T  = 0.45 "C, 7 = 3.0 T / h .  ( b )  AT = 0.52 "C, = 3.0 "C/h. 
(c) AT = 0-69 'C, T/ = 2 "Clh. 

KRISHNAMURTI 
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( c )  
FIGURE 5. A 'plan view' of a laycr of' liquid. Dow Corning '200' series silicone oil. viscosity 
200 cS, conductivity 3.7 x 1 0 P  c..g.s., clcpth 2.0 mi. (a )  'Rolls' in a square geometry, 
17' = 0.67 "C, '1 = 0. ( b )  Transition to tmo-dimensional rolls. AT = 1 . 0  "C. r/ = 0 .  
(c) Transition to two-dimensional rolls, A T  = 0.63 "C, r/ = 0. 

KRISHNAMURTI 


